SIES College of Commerce and Economics (Autonomous), Sion (East)

Department of Information Technology

M.SC (DS)

PROGRAM OUTCOMES

PO- 1: Learners will acquire proficiency in the field of Data Science.

PO- 2: Learners will upgrade and strengthen analytical and research skills.

PO- 3: Learners will apply acquired knowledge, tools, and techniques in an ethical and professional manner.

PO- 4: Learners will enhance future ready skills for Industry and Academics.

PO- 5: Learners will be trained in leadership skills and demonstrate social responsibilities with sensitivity towards sustainability.

Program: M.Sc. (Data Science)

Year: Part I

Semester: I

Course: Statistical Methods and Linear Programming

Course Code: MDS101

Course Outcomes:

After completion of the course,

The learner will be able to

No	Course Outcome	PO Mapping
CO 1	identify the fundamental concepts of expert	PO1, PO2,
(Remember)	system and its applications.	PO4
CO 2	Understand the probability and concept of	PO1, PO2,
(Understanding)	fuzzy sets for solving AI based problems.	PO4

CO 3	apply Moments to calculate measures of	PO1, PO3,
(Applying)	skewness and kurtosis.	PO4, PO5
CO 4	analyse different Measures of Central	PO1, PO2,
(Analysing)	Tendency.	PO4
CO 5	Compare solutions of Linear Programming	PO1, PO4,
(Evaluating)	Problems by graphical and simplex	PO5
	methods.	
CO 6 (Creating)	Formulate LPP problems and designing	PO1, PO3,
	solutions by various soft computing	PO5
	approaches for a given problem.	

Year: Part I

Semester: I

Course: Advanced Database Management Systems

Course Code: MDS102

Course Outcomes:

After completion of the course,

The learner will be able to

No	Course Outcome	PO Mapping
CO 1	identify advance database concepts and	PO1, PO2
(Remember)	database models.	
CO 2	explain various terms related to	PO1,PO2
(Understanding)	transaction management.	
CO 3 (Applying)	apply queries on database.	PO1, PO3,
		PO4, PO5
CO 4 (Analysing)	analyse the concept of object- relational	PO1, PO2,

	database in development of various real	PO4, PO5
	time software.	
CO 5 (Evaluating)	evaluate different database designs and	PO1, PO2,
	architecture.	PO4, PO5
CO 6 (Creating)	create and manage different types of	PO1, PO3,
	databases.	PO4, PO5

Year: Part I

Semester: I

Course: Data Mining for Business Intelligence

Course Code: MDS103

Course Outcomes:

After completion of the course,

No	Course Outcome	PO Mapping
CO 1	identify various patterns hidden in the data and	PO-1, PO-2,PO-4
(Remember)	recognise usefulness of business intelligent	
(Remember)	systems.	
CO 2	demonstrate the Data Mining concepts and the	PO-2,PO-4
(Understanding)	necessary libraries to be used in algorithms in	
(Onderstanding)	python.	
CO 3	apply the life cycle of Knowledge Discovery	PO-2,PO-3,PO-4
(Applying)	Process and calculate the accuracy of the model	
CO 4	analyse the Data using various Data Mining	PO-2,PO-3,PO-4
(Analysing)	algorithms and appraise new data sets	
CO 5	assess and evaluate theoretical concepts of Data	PO-2,PO-4, PO-5
(Evaluating)	Mining with their applications	

CO 6 (Creating)	compile strengths and weaknesses of popular	PO-2,PO-4, PO-5
	approaches of Data Mining	

Year: Part I

Semester: I

Course: Data Science - I

Course Code: MDS104

Course Outcomes:

After completion of the course,

No	Course Outcome	PO Mapping
CO 1	describe basics of R programming.	PO-1, PO-4
(Remember)		
CO 2	explain interfaces of R, Vectorizing Matrix	PO-1, PO-4
(Understanding)	operations.	
CO 3 (Applying)	illustrate different control structures, functions	PO-1, PO-3,PO-4
	and scoping rules of R and apply debugging in	
	R.	
CO 4	analyse the coding standards of R	PO-1, PO-2,
(Analysing)		PO-3,PO-4
CO 5	evaluate R programming with data analysis case	PO-1, PO-2,
(Evaluating)	study.	PO-4
CO 6 (Creating)	design data analysis models using R	PO-1, PO-2,
	programming.	PO-4

Year: Part I

Semester: II

Course: Advanced Statistical Methods

Course Code: MDS201

After completion of the course,

No	Course Outcome	PO Mapping
CO 1	identify the fundamental concepts of	PO-1, PO-2, PO-4
(Remember)	expert system and its applications.	
CO 2	demonstrate probability and concept of	PO-1, PO-2, PO-4
(Understanding)	fuzzy sets for solving AI based	
	problems.	
CO 3 (Applying)	apply fuzzy system for solving	PO-2, PO-3, PO-4
	problems.	
CO 4 (Analysing)	analyse the applications of genetic	PO-2, PO-3, PO-4
	algorithms in different problems	
	related to artificial intelligence.	
CO 5 (Evaluating)	summarize knowledge representation	PO-2, PO-4, PO-3
	techniques in natural language	
CO 6 (Creating)	plan and design solutions by various	PO-2, PO-4, PO-5
	soft computing approaches for a given	
	problem	

Year: Part I

Semester: II

Course: Machine Learning

Course Code: MDS202

After completion of the course,

No	Course Outcome	PO Mapping
CO 1	identify various patterns hidden in the data	PO-1, PO-2, PO-
(Remember)	set and recognise useful data for Machine	4
	Learning Algorithms	
CO 2	demonstrate the concepts in python and	PO-2, PO-4
(Understanding)	necessary libraries for Machine Learning	
	algorithms using python.	
CO 3	apply various algorithms to the model and	PO-2, PO-4
(Applying)	understanding the accuracy of the model.	
CO 4	analyse the Data using various Machine	PO-2, PO-4
(Analysing)	Learning algorithms and testing new data	
	sets.	
CO 5	assess and evaluate the tests with dummy	PO-2, PO-4, PO-
(Evaluating)	data sets and different models of Machine	3
	Learning	
CO 6	Organise machine learning data using	PO-2, PO-4, PO-
(Creating)	model complexity.	5

Year: Part I

Semester: II

Course: Linear Algebra

Course Code: MDS203

After completion of the course,

No	Course Outcome	PO Mapping
CO 1 (Remember)	describe linear structures verbally, geometrically, symbolically, and numerically.	PO-2, PO-3
CO 2 (Understanding)	understand algebraic and geometric representations of vectors in R^n and their operations, including addition, scalar multiplication and dot product	PO-2, PO-3
CO 3 (Applying)	apply the terminology and notation of Linear Algebra correctly and appropriately in a variety of abstract and applied contexts.	PO-3, PO-2
CO 4 (Analysing)	analyse and compare algorithms used to solve linear algebra problems.	PO-2, PO-3
CO 5 (Evaluating)	Evaluate the matrix calculations for at least 3×3,3×3 matrices: row echelon form, reduced row echelon form, matrix inverse, and a variety of arithmetic operations.	PO-2, PO-3
CO 6 (Creating)	construct linear models for a variety of applied problems.	PO-2, PO-3

Year: Part I

Semester: II

Course: Research Methodology

Course Code: MDS204

After completion of the course,

No	Course Outcome	PO Mapping
CO 1	define different methodologies and	PO-1, PO-2, PO-3
(Remember)	techniques used in research work.	
CO 2	explain basic computer skills	PO-1, PO-2, PO-3
(Understanding)	necessary for the conduct of	
	research.	
CO 3 (Applying)	apply the basic function and	PO-1, PO-2, PO-3
	working of analytical instruments	
	used in research	
CO 4 (Analysing)	Select the required numerical skills	PO-1, PO-2, PO-4
	necessary to carry out research.	
CO 5 (Evaluating)	summarize the research problem,	PO-1, PO-2, PO-3
	appropriate research design.	
CO 6 (Creating)	devise the procedures of sampling,	PO-1, PO-2, PO-5
	data collection, analysis and	
	reporting.	